We prove an existence result for the fractional Kelvin–Voigt’s model involving Caputo’s derivative on time-dependent cracked domains. We first show the existence of a solution to a regularized version of this problem. Then, we use a compactness argument to derive that the fractional Kelvin–Voigt’s model admits a solution which satisfies an energy-dissipation inequality. Finally, we prove that when the crack is not moving, the solution is unique.

An existence result for the fractional Kelvin–Voigt’s model on time-dependent cracked domains

Caponi M.;
2021-01-01

Abstract

We prove an existence result for the fractional Kelvin–Voigt’s model involving Caputo’s derivative on time-dependent cracked domains. We first show the existence of a solution to a regularized version of this problem. Then, we use a compactness argument to derive that the fractional Kelvin–Voigt’s model admits a solution which satisfies an energy-dissipation inequality. Finally, we prove that when the crack is not moving, the solution is unique.
File in questo prodotto:
File Dimensione Formato  
Caponi-Sapio2021_Article_AnExistenceResultForTheFractio.pdf

accesso aperto

Licenza: Creative commons
Dimensione 657.34 kB
Formato Adobe PDF
657.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact