This paper focuses on the numerical approximation of a class of non-local systems of conservation laws in one space dimension, arising in traffic modeling, proposed by [F. A. Chiarello and P. Goatin. Non-local multi-class traffic flow models. Networks and Heteroge-neous Media, to appear, Aug. 2018]. We present the multi-class version of the Finite Volume WENO (FV-WENO) schemes [C. Chalons, P. Goatin, and L. M. Villada. High-order numerical schemes for one-dimensional non-local conservation laws. SIAM Journal on Scientific Computing, 40(1):A288–A305, 2018.], with quadratic polynomial reconstruction in each cell to evaluate the non-local terms in order to obtain high-order of accuracy. Simulations using FV-WENO schemes for a multi-class model for autonomous and human-driven traffic flow are presented for M = 3
High-order Finite Volume WENO schemes for non-local multi-class traffic flow models
Chiarello F;
2020-01-01
Abstract
This paper focuses on the numerical approximation of a class of non-local systems of conservation laws in one space dimension, arising in traffic modeling, proposed by [F. A. Chiarello and P. Goatin. Non-local multi-class traffic flow models. Networks and Heteroge-neous Media, to appear, Aug. 2018]. We present the multi-class version of the Finite Volume WENO (FV-WENO) schemes [C. Chalons, P. Goatin, and L. M. Villada. High-order numerical schemes for one-dimensional non-local conservation laws. SIAM Journal on Scientific Computing, 40(1):A288–A305, 2018.], with quadratic polynomial reconstruction in each cell to evaluate the non-local terms in order to obtain high-order of accuracy. Simulations using FV-WENO schemes for a multi-class model for autonomous and human-driven traffic flow are presented for M = 3Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.