In this paper, we investigate the energy decay of hyperbolic systems of wave-wave, wave-Euler-Bernoulli beam and beam-beam types. The two equations are coupled through boundary connection with only one localized non-smooth fractional Kelvin-Voigt damping. First, we reformulate each system into an augmented model and using a general criteria of Arendt-Batty, we prove that our models are strongly stable. Next, by using frequency domain approach, combined with multiplier technique and some interpolation inequalities, we establish different types of polynomial energy decay rate which depends on the order of the fractional derivative and the type of the damped equation in the system.

Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping

Issa, Ibtissam;
2021-01-01

Abstract

In this paper, we investigate the energy decay of hyperbolic systems of wave-wave, wave-Euler-Bernoulli beam and beam-beam types. The two equations are coupled through boundary connection with only one localized non-smooth fractional Kelvin-Voigt damping. First, we reformulate each system into an augmented model and using a general criteria of Arendt-Batty, we prove that our models are strongly stable. Next, by using frequency domain approach, combined with multiplier technique and some interpolation inequalities, we establish different types of polynomial energy decay rate which depends on the order of the fractional derivative and the type of the damped equation in the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/245603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact