Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈ 1.4 cm2V−1s−1 and a subthreshold swing SS ≈ 10 V dec−1. Current–voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW−1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.

WS2 Nanotube Transistor for Photodetection and Optoelectronic Memory Applications

Passacantando M.;
2024-01-01

Abstract

Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈ 1.4 cm2V−1s−1 and a subthreshold swing SS ≈ 10 V dec−1. Current–voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW−1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/246820
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact