The aim of this note is to study the Cauchy problem for the 2D Euler equations under very low regularity assumptions on the initial datum. We prove propagation of regularity of logarithmic order in the class of weak solutions with L-p initial vorticity, provided that p >= 4. We also study the inviscid limit from the 2D Navier-Stokes equations for vorticity with logarithmic regularity in the Yudovich class, showing a rate of convergence of order | log nu|^(-alpha/2) with alpha > 0.
Propagation of logarithmic regularity and inviscid limit for the 2D Euler equations
Ciampa, Gennaro;Spirito, Stefano
2024-01-01
Abstract
The aim of this note is to study the Cauchy problem for the 2D Euler equations under very low regularity assumptions on the initial datum. We prove propagation of regularity of logarithmic order in the class of weak solutions with L-p initial vorticity, provided that p >= 4. We also study the inviscid limit from the 2D Navier-Stokes equations for vorticity with logarithmic regularity in the Yudovich class, showing a rate of convergence of order | log nu|^(-alpha/2) with alpha > 0.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.