In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.

The viscoelastic paradox in a nonlinear Kelvin-Voigt type model of dynamic fracture

Caponi Maicol
;
2024-01-01

Abstract

In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/247604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact