We propose a phase-field model of dynamic fracture based on the Ambrosio-Tortorelli’s approximation, which takes into account dissipative effects due to the speed of the crack tips. By adapting the time discretization scheme contained in Larsen et al. (Math Models Methods Appl Sci 20:1021–1048, 2010), we show the existence of a dynamic crack evolution satisfying an energy–dissipation balance, according to Griffith’s criterion. Finally, we analyze the dynamic phase–field model of Bourdin et al. (Int J Fract 168:133–143, 2011) and Larsen (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, IUTAM Bookseries, vol 21. Springer, Dordrecht, 2010, pp 131–140) with no dissipative terms.
Existence of solutions to a phase-field model of dynamic fracture with a crack-dependent dissipation
Caponi Maicol
2020-01-01
Abstract
We propose a phase-field model of dynamic fracture based on the Ambrosio-Tortorelli’s approximation, which takes into account dissipative effects due to the speed of the crack tips. By adapting the time discretization scheme contained in Larsen et al. (Math Models Methods Appl Sci 20:1021–1048, 2010), we show the existence of a dynamic crack evolution satisfying an energy–dissipation balance, according to Griffith’s criterion. Finally, we analyze the dynamic phase–field model of Bourdin et al. (Int J Fract 168:133–143, 2011) and Larsen (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, IUTAM Bookseries, vol 21. Springer, Dordrecht, 2010, pp 131–140) with no dissipative terms.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.