In the present review, the main features involved in the susceptibility and progression of neurodegenerative disorders (NDDs) have been discussed, with the purpose of highlighting their potential application for promoting the management and treatment of patients with NDDs. In particular, the impact of genetic and epigenetic factors, nutrients, and lifestyle will be presented, with particular emphasis on Alzheimer’s disease (AD) and Parkinson’s disease (PD). Metabolism, dietary habits, physical exercise and microbiota are part of a complex network that is crucial for brain function and preservation. This complex equilibrium can be disrupted by genetic, epigenetic, and environmental factors causing perturbations in central nervous system homeostasis, contributing thereby to neuroinflammation and neurodegeneration. Diet and physical activity can directly act on epigenetic modifications, which, in turn, alter the expression of specific genes involved in NDDs onset and progression. On this subject, the introduction of nutrigenomics shed light on the main molecular players involved in the modulation of health and disease status. In particular, the review presents data concerning the impact of ADH1B, CYP1A2, and MTHFR on the susceptibility and progression of NDDs (especially AD and PD) and how they may be exploited for developing precision medicine strategies for the disease treatment and management.

Relationship between Nutrition, Lifestyle, and Neurodegenerative Disease: Lessons from ADH1B, CYP1A2 and MTHFR

Cascella, Raffaella;Caputo, Valerio;
2022-01-01

Abstract

In the present review, the main features involved in the susceptibility and progression of neurodegenerative disorders (NDDs) have been discussed, with the purpose of highlighting their potential application for promoting the management and treatment of patients with NDDs. In particular, the impact of genetic and epigenetic factors, nutrients, and lifestyle will be presented, with particular emphasis on Alzheimer’s disease (AD) and Parkinson’s disease (PD). Metabolism, dietary habits, physical exercise and microbiota are part of a complex network that is crucial for brain function and preservation. This complex equilibrium can be disrupted by genetic, epigenetic, and environmental factors causing perturbations in central nervous system homeostasis, contributing thereby to neuroinflammation and neurodegeneration. Diet and physical activity can directly act on epigenetic modifications, which, in turn, alter the expression of specific genes involved in NDDs onset and progression. On this subject, the introduction of nutrigenomics shed light on the main molecular players involved in the modulation of health and disease status. In particular, the review presents data concerning the impact of ADH1B, CYP1A2, and MTHFR on the susceptibility and progression of NDDs (especially AD and PD) and how they may be exploited for developing precision medicine strategies for the disease treatment and management.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/248641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact