Recently Krylov [N. V. Krylov, On time inhomogeneous stochastic Itô equations with drift in Ld+1, Ukraïn. Mat. Zh. 72 (2020) 1232-1253] established weak existence of solutions to SDEs for integrable drifts in mixed Lebesgue spaces, whose exponents satisfy the condition 1/q + d/p ≤ 1, thus going below the celebrated Ladyzhenskaya-Prodi-Serrin condition. We present here a variant of such result, whose proof relies on an alternative technique, based on a partial Zvonkin transform; this allows for drifts with growth at infinity and/or in uniformly local Lebesgue spaces.

A note on weak existence for singular SDEs

Galeati, Lucio
2024-01-01

Abstract

Recently Krylov [N. V. Krylov, On time inhomogeneous stochastic Itô equations with drift in Ld+1, Ukraïn. Mat. Zh. 72 (2020) 1232-1253] established weak existence of solutions to SDEs for integrable drifts in mixed Lebesgue spaces, whose exponents satisfy the condition 1/q + d/p ≤ 1, thus going below the celebrated Ladyzhenskaya-Prodi-Serrin condition. We present here a variant of such result, whose proof relies on an alternative technique, based on a partial Zvonkin transform; this allows for drifts with growth at infinity and/or in uniformly local Lebesgue spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/248980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact