We consider stochastic differential equations (SDEs) driven by a fractional Brownian motion with a drift coefficient that is allowed to be arbitrarily close to criticality in a scaling sense. We develop a comprehensive solution theory that includes strong existence, path-by-path uniqueness, existence of a solution flow of diffeomorphisms, Malliavin differentiability and $\rho$-irregularity. As a consequence, we can also treat McKean-Vlasov, transport and continuity equations.
Solution theory of fractional SDEs in complete subcritical regimes
Lucio Galeati;
2022-01-01
Abstract
We consider stochastic differential equations (SDEs) driven by a fractional Brownian motion with a drift coefficient that is allowed to be arbitrarily close to criticality in a scaling sense. We develop a comprehensive solution theory that includes strong existence, path-by-path uniqueness, existence of a solution flow of diffeomorphisms, Malliavin differentiability and $\rho$-irregularity. As a consequence, we can also treat McKean-Vlasov, transport and continuity equations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.