Let G be a graph and X⊆V(G). Then, vertices x and y of G are X-visible if there exists a shortest x,y-path where no internal vertices belong to X. The set X is a mutual-visibility set of G if every two vertices of X are X-visible, while X is a total mutual-visibility set if any two vertices from V(G) are X-visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) μ(G) (resp. μt(G)) of G. It is known that computing μ(G) is an NP-complete problem, as well as μt(G). In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, Fibonacci cubes, cube-connected cycles, and butterflies). Concerning computing μ(G), we provide approximation algorithms for hypercubes, Fibonacci cubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing μt(G) (in the literature, already studied in hypercubes), whereas we obtain exact formulae for both cube-connected cycles and butterflies.

Mutual and total mutual visibility in hypercube-like graphs

Cicerone S.
;
Di Fonso A.;Di Stefano G.;
2025-01-01

Abstract

Let G be a graph and X⊆V(G). Then, vertices x and y of G are X-visible if there exists a shortest x,y-path where no internal vertices belong to X. The set X is a mutual-visibility set of G if every two vertices of X are X-visible, while X is a total mutual-visibility set if any two vertices from V(G) are X-visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) μ(G) (resp. μt(G)) of G. It is known that computing μ(G) is an NP-complete problem, as well as μt(G). In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, Fibonacci cubes, cube-connected cycles, and butterflies). Concerning computing μ(G), we provide approximation algorithms for hypercubes, Fibonacci cubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing μt(G) (in the literature, already studied in hypercubes), whereas we obtain exact formulae for both cube-connected cycles and butterflies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/249559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact