We show that the parabolic quaternionic Monge-Ampère equation on a compact hyperkähler manifold has always a long-time solution which, once normalized, converges smoothly to a solution of the quaternionic Monge-Ampère equation. This is the same setting in which Dinew and Sroka (2023) prove the conjecture of Alesker and Verbitsky (2010). We also introduce an analogue of the Chern-Ricci flow in hyperhermitian manifolds.

The parabolic quaternionic Calabi–Yau equation on hyperkähler manifolds

Bedulli, Lucio;Vezzoni, Luigi
2024-01-01

Abstract

We show that the parabolic quaternionic Monge-Ampère equation on a compact hyperkähler manifold has always a long-time solution which, once normalized, converges smoothly to a solution of the quaternionic Monge-Ampère equation. This is the same setting in which Dinew and Sroka (2023) prove the conjecture of Alesker and Verbitsky (2010). We also introduce an analogue of the Chern-Ricci flow in hyperhermitian manifolds.
File in questo prodotto:
File Dimensione Formato  
10.4171-rmi-1499.pdf

accesso aperto

Licenza: Creative commons
Dimensione 474.96 kB
Formato Adobe PDF
474.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/251999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact