Given an undirected connected graph ๐บ = (๐‘‰ (๐บ), ๐ธ(๐บ)) on ๐‘› vertices, the minimum Monitoring Edge-Geodetic Set (MEG-set) problem asks to find a subset ๐‘€ โŠ† ๐‘‰ (๐บ) of minimum cardinality such that, for every edge ๐‘’ โˆˆ ๐ธ(๐บ), there exist ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ for which all shortest paths between ๐‘ฅ and ๐‘ฆ in ๐บ traverse ๐‘’. We show that, for any constant ๐‘ < 1/2, no polynomial-time (๐‘ log ๐‘›)-approximation algorithm for the minimum MEG-set problem exists, unless P = NP.

On the Inapproximability of Finding Minimum Monitoring Edge-Geodetic Sets (short paper)

Bilo' D.;Colli G.;Forlizzi L.;Leucci S.
2024-01-01

Abstract

Given an undirected connected graph ๐บ = (๐‘‰ (๐บ), ๐ธ(๐บ)) on ๐‘› vertices, the minimum Monitoring Edge-Geodetic Set (MEG-set) problem asks to find a subset ๐‘€ โŠ† ๐‘‰ (๐บ) of minimum cardinality such that, for every edge ๐‘’ โˆˆ ๐ธ(๐บ), there exist ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ for which all shortest paths between ๐‘ฅ and ๐‘ฆ in ๐บ traverse ๐‘’. We show that, for any constant ๐‘ < 1/2, no polynomial-time (๐‘ log ๐‘›)-approximation algorithm for the minimum MEG-set problem exists, unless P = NP.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/252499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact