Given an undirected connected graph G = (V(G), E(G)) on n vertices, the minimum Monitoring Edge-Geodetic Set (MEG-set) problem asks to find a subset M subset of V(G) of minimum cardinality such that, for every edge e in E(G), there exist x, y in M for which all shortest paths between x and y in G traverse e. We show that, for any constant c < 1/2, no polynomial-time (c log n)-approximation algorithm for the minimum MEG-set problem exists, unless P = NP.

On the Inapproximability of Finding Minimum Monitoring Edge-Geodetic Sets (short paper)

Bilo' D.;Colli G.;Forlizzi L.;Leucci S.
2024-01-01

Abstract

Given an undirected connected graph G = (V(G), E(G)) on n vertices, the minimum Monitoring Edge-Geodetic Set (MEG-set) problem asks to find a subset M subset of V(G) of minimum cardinality such that, for every edge e in E(G), there exist x, y in M for which all shortest paths between x and y in G traverse e. We show that, for any constant c < 1/2, no polynomial-time (c log n)-approximation algorithm for the minimum MEG-set problem exists, unless P = NP.
File in questo prodotto:
File Dimensione Formato  
paper110.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/252499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact