This letter proposes a novel model order reduction (MOR) approach leveraging frequency-domain proper orthogonal decomposition (POD) for partial element equivalent circuit (PEEC) models characterized by neutral delayed differential equations (NDDEs). Our technique incorporates frequency-domain derivatives snapshots alongside frequency-domain response snapshots, thereby enhancing the accuracy of the reduced-order model while minimizing the computational overhead compared with solely utilizing frequency-domain response snapshots. A numerical example is provided to demonstrate the effectiveness and efficiency of the proposed method in both the frequency domain and the time domain.
Derivatives-Enhanced Proper Orthogonal Decomposition for PEEC Models With Delays
Khattak M. A.
;Romano D.;Antonini G.;
2024-01-01
Abstract
This letter proposes a novel model order reduction (MOR) approach leveraging frequency-domain proper orthogonal decomposition (POD) for partial element equivalent circuit (PEEC) models characterized by neutral delayed differential equations (NDDEs). Our technique incorporates frequency-domain derivatives snapshots alongside frequency-domain response snapshots, thereby enhancing the accuracy of the reduced-order model while minimizing the computational overhead compared with solely utilizing frequency-domain response snapshots. A numerical example is provided to demonstrate the effectiveness and efficiency of the proposed method in both the frequency domain and the time domain.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.