This paper proposes the use of a sparse polynomial chaos expansion method, whose set of basis functions is sparsified using the hyperbolic truncation scheme. This allows the reduction of the computational cost needed to generate a polynomial chaos model that can predict statistical properties of a high-dimensional uncertainty quantification problem of crosstalk in braided shielded cables. By comparing the results of the sparse polynomial chaos expansion with those of a standard polynomial chaos expansion and a Monte Carlo method, we verify that sparse polynomial chaos expansion using the hyperbolic truncation scheme can effectively reduce the curse of dimensionality issues in high-dimensional uncertainty quantification problems for braided shielded cables.

Sparse polynomial chaos expansion for high-dimensional uncertainty quantification of braided shielded cables

Jiang H.
;
Antonini G.
2024-01-01

Abstract

This paper proposes the use of a sparse polynomial chaos expansion method, whose set of basis functions is sparsified using the hyperbolic truncation scheme. This allows the reduction of the computational cost needed to generate a polynomial chaos model that can predict statistical properties of a high-dimensional uncertainty quantification problem of crosstalk in braided shielded cables. By comparing the results of the sparse polynomial chaos expansion with those of a standard polynomial chaos expansion and a Monte Carlo method, we verify that sparse polynomial chaos expansion using the hyperbolic truncation scheme can effectively reduce the curse of dimensionality issues in high-dimensional uncertainty quantification problems for braided shielded cables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/253772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact