When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). We tackle this task by introducing a notion of temporal core decomposition where each core is associated with its span: we call such cores span-cores. As the total number of time intervals is quadratic in the size of the temporal domain T under analysis, the total number of span-cores is quadratic in |T | as well. Our first contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-cores, i.e., span-cores that are not dominated by any other span-core by both the coreness property and the span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly compute the maximal ones without computing all span-cores. Experimentation on several real-world temporal networks confirms the efficiency and scalability of our methods. Applications on temporal networks, gathered by a proximity-sensing infrastructure recording face-to-face interactions in schools, highlight the relevance of the notion of (maximal) span-core in analyzing social dynamics and detecting/correcting anomalies in the data.

Mining (maximal) Span-cores from Temporal Networks

Gullo F.
2018-01-01

Abstract

When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). We tackle this task by introducing a notion of temporal core decomposition where each core is associated with its span: we call such cores span-cores. As the total number of time intervals is quadratic in the size of the temporal domain T under analysis, the total number of span-cores is quadratic in |T | as well. Our first contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-cores, i.e., span-cores that are not dominated by any other span-core by both the coreness property and the span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly compute the maximal ones without computing all span-cores. Experimentation on several real-world temporal networks confirms the efficiency and scalability of our methods. Applications on temporal networks, gathered by a proximity-sensing infrastructure recording face-to-face interactions in schools, highlight the relevance of the notion of (maximal) span-core in analyzing social dynamics and detecting/correcting anomalies in the data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/256845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 41
social impact