We study a class of Schrodinger operators of the form L-epsilon := -epsilon(2) d(2)/ds(2) + V, where V : R -> R is a non-negative function singular at 0, that is V(0) = 0. Under suitable assumptions on the potential V, we derive sharp lower and upper bounds for the fundamental solution h(epsilon). Moreover, we obtain information on the spectrum of the self-adjoint operator defined by L-epsilon in L-2 (R). In particular, we give a lower bound for the eigenvalues.

Estimates for fundamental solutions and spectral bounds for a class of Schrodinger operators

PIGNOTTI, CRISTINA
2008-01-01

Abstract

We study a class of Schrodinger operators of the form L-epsilon := -epsilon(2) d(2)/ds(2) + V, where V : R -> R is a non-negative function singular at 0, that is V(0) = 0. Under suitable assumptions on the potential V, we derive sharp lower and upper bounds for the fundamental solution h(epsilon). Moreover, we obtain information on the spectrum of the self-adjoint operator defined by L-epsilon in L-2 (R). In particular, we give a lower bound for the eigenvalues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/2577
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact