Total hip arthroplasty (THA) is a widely performed surgical procedure that has evolved significantly due to advancements in artificial intelligence (AI) and robotics. As demand for THA grows, reliable tools are essential to enhance diagnosis, preoperative planning, surgical precision, and postoperative rehabilitation. AI applications in orthopedic surgery offer innovative solutions, including automated hip osteoarthritis (OA) diagnosis, precise implant positioning, and personalized risk stratification, thereby improving patient outcomes. Deep learning models have transformed OA severity grading and implant identification by automating traditionally manual processes with high accuracy. Additionally, AI-powered systems optimize preoperative planning by predicting the hip joint center and identifying complications using multimodal data. Robotic-assisted THA enhances surgical precision with real-time feedback, reducing complications such as dislocations and leg length discrepancies while accelerating recovery. Despite these advancements, barriers such as cost, accessibility, and the steep learning curve for surgeons hinder widespread adoption. Postoperative rehabilitation benefits from technologies like virtual and augmented reality and telemedicine, which enhance patient engagement and adherence. However, limitations, particularly among elderly populations with lower adaptability to technology, underscore the need for user-friendly platforms. To ensure comprehensiveness, a structured literature search was conducted using PubMed, Scopus, and Web of Science. Keywords included "artificial intelligence", "machine learning", "robotics", and "total hip arthroplasty". Inclusion criteria emphasized peer-reviewed studies published in English within the last decade focusing on technological advancements and clinical outcomes. This review evaluates AI and robotics' role in THA, highlighting opportunities and challenges and emphasizing further research and real-world validation to integrate these technologies into clinical practice effectively.

The Role of Artificial Intelligence and Emerging Technologies in Advancing Total Hip Arthroplasty

Picchi, Aurelio;Iademarco, Giulio
;
Fidanza, Andrea;Logroscino, Giandomenico;
2025-01-01

Abstract

Total hip arthroplasty (THA) is a widely performed surgical procedure that has evolved significantly due to advancements in artificial intelligence (AI) and robotics. As demand for THA grows, reliable tools are essential to enhance diagnosis, preoperative planning, surgical precision, and postoperative rehabilitation. AI applications in orthopedic surgery offer innovative solutions, including automated hip osteoarthritis (OA) diagnosis, precise implant positioning, and personalized risk stratification, thereby improving patient outcomes. Deep learning models have transformed OA severity grading and implant identification by automating traditionally manual processes with high accuracy. Additionally, AI-powered systems optimize preoperative planning by predicting the hip joint center and identifying complications using multimodal data. Robotic-assisted THA enhances surgical precision with real-time feedback, reducing complications such as dislocations and leg length discrepancies while accelerating recovery. Despite these advancements, barriers such as cost, accessibility, and the steep learning curve for surgeons hinder widespread adoption. Postoperative rehabilitation benefits from technologies like virtual and augmented reality and telemedicine, which enhance patient engagement and adherence. However, limitations, particularly among elderly populations with lower adaptability to technology, underscore the need for user-friendly platforms. To ensure comprehensiveness, a structured literature search was conducted using PubMed, Scopus, and Web of Science. Keywords included "artificial intelligence", "machine learning", "robotics", and "total hip arthroplasty". Inclusion criteria emphasized peer-reviewed studies published in English within the last decade focusing on technological advancements and clinical outcomes. This review evaluates AI and robotics' role in THA, highlighting opportunities and challenges and emphasizing further research and real-world validation to integrate these technologies into clinical practice effectively.
File in questo prodotto:
File Dimensione Formato  
jpm-15-00021-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 701.55 kB
Formato Adobe PDF
701.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/257739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact