We introduce the Whistler Identification by Spectral Power Estimation and Recognition (WhISPER) algorithm, a novel automated technique for detecting whistler waves in the top side of the Earth’s ionosphere. WhISPER is the first step towards a comprehensive system designed to accumulate and analyze a large dataset of whistler observations, which has been developed to advance our understanding of whistler generation and propagation. Unlike conventional image-correlation-based techniques, WhISPER identifies whistlers based on their energy content, enhancing computational efficiency. This work presents the results of applying WhISPER to four years (2019–2022) of top-side ionospheric magnetic field data. A statistical analysis of over 800,000 detected whistlers reveals a strong correlation with lightning activity and (as expected) higher occurrence rates during local summer months. The presented results demonstrate the excellent performance of the WhISPER technique in identifying whistler events.
Automatic Detection of Whistler Waves in the Top-Side Ionosphere: The WhISPER Technique
Giulia D’AngeloFormal Analysis
;Mirko PiersantiSupervision
2025-01-01
Abstract
We introduce the Whistler Identification by Spectral Power Estimation and Recognition (WhISPER) algorithm, a novel automated technique for detecting whistler waves in the top side of the Earth’s ionosphere. WhISPER is the first step towards a comprehensive system designed to accumulate and analyze a large dataset of whistler observations, which has been developed to advance our understanding of whistler generation and propagation. Unlike conventional image-correlation-based techniques, WhISPER identifies whistlers based on their energy content, enhancing computational efficiency. This work presents the results of applying WhISPER to four years (2019–2022) of top-side ionospheric magnetic field data. A statistical analysis of over 800,000 detected whistlers reveals a strong correlation with lightning activity and (as expected) higher occurrence rates during local summer months. The presented results demonstrate the excellent performance of the WhISPER technique in identifying whistler events.File | Dimensione | Formato | |
---|---|---|---|
atmosphere-16-00522_compressed.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
538.12 kB
Formato
Adobe PDF
|
538.12 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.