This study introduces an innovative and scalable approach for automated road surface assessment by integrating Mobile Mapping System (MMS)-based LiDAR data analysis with an open-source WebGIS platform. In a U.S.-based case study, over 20 datasets were collected along Interstate I-65 in West Lafayette, Indiana, using the Purdue Wheel-based Mobile Mapping System-Ultra High Accuracy (PWMMS-UHA), following Indiana Department of Transportation (INDOT) guidelines. Preprocessing included noise removal, resolution reduction to 2 cm, and ground/non-ground separation using the Cloth Simulation Filter (CSF), resulting in Bare Earth (BE), Digital Terrain Model (DTM), and Above Ground (AG) point clouds. The optimized BE layer, enriched with intensity and color information, enabled crack detection through Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Random Forest (RF) classification, with and without intensity normalization. DBSCAN parameter tuning was guided by silhouette scores, while model performance was evaluated using precision, recall, F1-score, and the Jaccard Index, benchmarked against reference data. Results demonstrate that RF consistently outperformed DBSCAN, particularly under intensity normalization, achieving Jaccard Index values of 94% for longitudinal and 88% for transverse cracks. A key contribution of this work is the integration of geospatial analytics into an interactive, open-source WebGIS environment-developed using Blender, QGIS, and Lizmap-to support predictive maintenance planning. Moreover, intervention thresholds were defined based on crack surface area, aligned with the Pavement Condition Index (PCI) and FHWA standards, offering a data-driven framework for infrastructure monitoring. This study emphasizes the practical advantages of comparing clustering and machine learning techniques on 3D LiDAR point clouds, both with and without intensity normalization, and proposes a replicable, computationally efficient alternative to deep learning methods, which often require extensive training datasets and high computational resources.

LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance

Pascucci N.
;
Dominici D.;Habib A.
2025-01-01

Abstract

This study introduces an innovative and scalable approach for automated road surface assessment by integrating Mobile Mapping System (MMS)-based LiDAR data analysis with an open-source WebGIS platform. In a U.S.-based case study, over 20 datasets were collected along Interstate I-65 in West Lafayette, Indiana, using the Purdue Wheel-based Mobile Mapping System-Ultra High Accuracy (PWMMS-UHA), following Indiana Department of Transportation (INDOT) guidelines. Preprocessing included noise removal, resolution reduction to 2 cm, and ground/non-ground separation using the Cloth Simulation Filter (CSF), resulting in Bare Earth (BE), Digital Terrain Model (DTM), and Above Ground (AG) point clouds. The optimized BE layer, enriched with intensity and color information, enabled crack detection through Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Random Forest (RF) classification, with and without intensity normalization. DBSCAN parameter tuning was guided by silhouette scores, while model performance was evaluated using precision, recall, F1-score, and the Jaccard Index, benchmarked against reference data. Results demonstrate that RF consistently outperformed DBSCAN, particularly under intensity normalization, achieving Jaccard Index values of 94% for longitudinal and 88% for transverse cracks. A key contribution of this work is the integration of geospatial analytics into an interactive, open-source WebGIS environment-developed using Blender, QGIS, and Lizmap-to support predictive maintenance planning. Moreover, intervention thresholds were defined based on crack surface area, aligned with the Pavement Condition Index (PCI) and FHWA standards, offering a data-driven framework for infrastructure monitoring. This study emphasizes the practical advantages of comparing clustering and machine learning techniques on 3D LiDAR point clouds, both with and without intensity normalization, and proposes a replicable, computationally efficient alternative to deep learning methods, which often require extensive training datasets and high computational resources.
File in questo prodotto:
File Dimensione Formato  
remotesensing-17-01543-v2 (2)2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/264179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact