In this paper we study the Leray weak solutions of the incompressible Navier Stokes equation in an exterior do- main. We describe, in particular, a hyperbolic version of the so called artificial compressibility method investigated by J.L. Lions and Temam. The convergence of these type of approx- imations shows in general a lack of strong convergence due to the presence of acoustic waves. In this paper we face this diffi- culty by taking care of the dispersive nature of these waves by means of the Strichartz estimates or waves equations satisfied by the pressure. We introduce wave equations to take care of the pressure in different acoustic components, each one of them satisfying a specific initial boundary value problem. The strong convergence analysis of the velocity field will be achieved by us- ing the associated Leray-Hodge decomposition.
Leray weak solutions of the incompressible Navier Stokes system on exterior domains via the artificial compressibility method
DONATELLI, DONATELLA;MARCATI, PIERANGELO
2010-01-01
Abstract
In this paper we study the Leray weak solutions of the incompressible Navier Stokes equation in an exterior do- main. We describe, in particular, a hyperbolic version of the so called artificial compressibility method investigated by J.L. Lions and Temam. The convergence of these type of approx- imations shows in general a lack of strong convergence due to the presence of acoustic waves. In this paper we face this diffi- culty by taking care of the dispersive nature of these waves by means of the Strichartz estimates or waves equations satisfied by the pressure. We introduce wave equations to take care of the pressure in different acoustic components, each one of them satisfying a specific initial boundary value problem. The strong convergence analysis of the velocity field will be achieved by us- ing the associated Leray-Hodge decomposition.File | Dimensione | Formato | |
---|---|---|---|
3936-ext-artcom_pubblicato.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
354.96 kB
Formato
Adobe PDF
|
354.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.