Significance: A shared understanding of terminology is essential for clear scientific communication and minimizing misconceptions. This is particularly challenging in rapidly expanding, interdisciplinary domains that utilize functional near-infrared spectroscopy (fNIRS), where researchers come from diverse backgrounds and apply their expertise in fields such as engineering, neuroscience, and psychology. Aim: The fNIRS Glossary Project was established to develop a community-sourced glossary covering key fNIRS terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques. Approach: The glossary was collaboratively developed by a diverse group of 76 fNIRS researchers, representing a wide range of career stages (from PhD students to experts) and disciplines. This collaborative process, structured across five phases, ensured the glossary's depth and comprehensiveness. Results: The glossary features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant. Conclusions: The fNIRS glossary provides a community-sourced resource that facilitates education and effective scientific communication within the fNIRS community and related fields. By lowering barriers to learning and engaging with fNIRS, the glossary is poised to benefit a broad spectrum of researchers, including those with limited access to educational resources.

The fNIRS glossary project: a consensus-based resource for functional near-infrared spectroscopy terminology

Ferrari, Marco;Quaresima, Valentina;
2025-01-01

Abstract

Significance: A shared understanding of terminology is essential for clear scientific communication and minimizing misconceptions. This is particularly challenging in rapidly expanding, interdisciplinary domains that utilize functional near-infrared spectroscopy (fNIRS), where researchers come from diverse backgrounds and apply their expertise in fields such as engineering, neuroscience, and psychology. Aim: The fNIRS Glossary Project was established to develop a community-sourced glossary covering key fNIRS terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques. Approach: The glossary was collaboratively developed by a diverse group of 76 fNIRS researchers, representing a wide range of career stages (from PhD students to experts) and disciplines. This collaborative process, structured across five phases, ensured the glossary's depth and comprehensiveness. Results: The glossary features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant. Conclusions: The fNIRS glossary provides a community-sourced resource that facilitates education and effective scientific communication within the fNIRS community and related fields. By lowering barriers to learning and engaging with fNIRS, the glossary is poised to benefit a broad spectrum of researchers, including those with limited access to educational resources.
File in questo prodotto:
File Dimensione Formato  
2025 Stute et al. Neurophotonics.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/265239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact