Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.4 mm. Following those published results, we examined the ultrastructure of HPLFs in contact with these membranes. The HPLFs were cultured in standard conditions, exposed to the tested materials, and, after 24 hours, subjected to transmission electron microscopy preparation. The examined parameters included the quality and distribution of mitochondria, Golgi apparatus, and the nucleus. HPLFs exposed to membranes showed ultrastructural changes. The cellular compartments aimed at protein synthesis and metabolism increased compared with the control. Unpaired t-test and one-way ANOVA showed that HPLFs exposed to membranes displayed an increase in the number of mitochondria (89.23±7.44 vs. 66.90±9.58; T1 and control; p<0.05 and 84.05±14.01 vs. 66.90±9.58; T2 and control; p<0.05). The reported ultrastructural evidence suggests an active synthesis state of HPLFs, probably triggered by the bovine collagen membrane, showing an active role of this material in the biology of the regeneration process.

Ultrastructural assessment of human periodontal ligament fibroblast interaction with bovine pericardium membranes: An in vitro study

Bernardi, Sara
;
Marchetti, Enrico;Torge, Diana;Simeone, Davide;Macchiarelli, Guido;Bianchi, Serena
2025-01-01

Abstract

Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.4 mm. Following those published results, we examined the ultrastructure of HPLFs in contact with these membranes. The HPLFs were cultured in standard conditions, exposed to the tested materials, and, after 24 hours, subjected to transmission electron microscopy preparation. The examined parameters included the quality and distribution of mitochondria, Golgi apparatus, and the nucleus. HPLFs exposed to membranes showed ultrastructural changes. The cellular compartments aimed at protein synthesis and metabolism increased compared with the control. Unpaired t-test and one-way ANOVA showed that HPLFs exposed to membranes displayed an increase in the number of mitochondria (89.23±7.44 vs. 66.90±9.58; T1 and control; p<0.05 and 84.05±14.01 vs. 66.90±9.58; T2 and control; p<0.05). The reported ultrastructural evidence suggests an active synthesis state of HPLFs, probably triggered by the bovine collagen membrane, showing an active role of this material in the biology of the regeneration process.
File in questo prodotto:
File Dimensione Formato  
Bernardi-40-1185-1194-2025.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.01 MB
Formato Adobe PDF
5.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/267679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact