By the cyclic structure of the affine plane AG(2,q), q≡7 mod 12, a mixed partition into a set of Möbius–Kantor configurations and a one-point set is provided. This generalizes a 2006 result of L. Berardi and T. Masini, who partitioned the affine plane of order 7 into a set of Möbius–Kantor configurations and a one-point set.
Partitioning AG(2,q), q≡7 mod 12, into Möbius-Kantor Configurations and One Point
Stefano Innamorati
2025-01-01
Abstract
By the cyclic structure of the affine plane AG(2,q), q≡7 mod 12, a mixed partition into a set of Möbius–Kantor configurations and a one-point set is provided. This generalizes a 2006 result of L. Berardi and T. Masini, who partitioned the affine plane of order 7 into a set of Möbius–Kantor configurations and a one-point set.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
axioms-14-00688.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


