In this note, we give a Weiss–Staffans type perturbation result for the generator A of a positive semigroup on a Banach lattice X. Assuming that the perturbation P : Z → X−1 can be factorized as P = BC for positive operators C : Z → RN and B : R^N → X−1 , we show that the admissibility and invertibility conditions for the associated input-output map F_∞ follow from the spectral condition r(CR(λ, A_−1 )B) < 1 for some λ > ω_0 (A). The abstract results are applied to domain perturbations of generators and perturbations of the first derivative.

On structured finite–rank perturbations of positive operator semigroups

Barbieri, Alessio;Engel, Klaus-Jochen
2025-01-01

Abstract

In this note, we give a Weiss–Staffans type perturbation result for the generator A of a positive semigroup on a Banach lattice X. Assuming that the perturbation P : Z → X−1 can be factorized as P = BC for positive operators C : Z → RN and B : R^N → X−1 , we show that the admissibility and invertibility conditions for the associated input-output map F_∞ follow from the spectral condition r(CR(λ, A_−1 )B) < 1 for some λ > ω_0 (A). The abstract results are applied to domain perturbations of generators and perturbations of the first derivative.
File in questo prodotto:
File Dimensione Formato  
Engel-Barbieri-EECT_2025.pdf

non disponibili

Descrizione: Articolo in rivista
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 449.27 kB
Formato Adobe PDF
449.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/269499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact