Infrared thermography has been widely applied in real industrial inspection of aerospace, energy management systems, engines, and electric systems. However, two-dimensional imaging modality limits its development. Here, a technique named frequency multiplexed photothermal correlation tomography (FM-PCT) was developed to enable non-destructive and contactless cross-sectional imaging for manufactured material evaluation and characterization. By combining advantages of photothermal tomography and pulsed thermography, FM-PCT facilitates the generation of three-dimensional thermal images through temporal superposition (stacking) of two-dimensional images from sequential subsurface depths. FM-PCT image processing involves pulsed excitation signals to which frequency delay and matched filtering techniques are applied. Major features of FM-PCT are high-resolution three-dimensional tomographic imaging under low camera frame-rate conditions with self-correcting capability for diffusion (blurring) correction of subsurface images due to cross-correlation processing of individual frequencies in the Fourier decomposition spectrum of the excitation pulse.
Infrared thermography has been widely applied in real industrial inspection of aerospace, energy management systems, engines, and electric systems. However, two-dimensional imaging modality limits its development. Here, a technique named frequency multiplexed photothermal correlation tomography (FM-PCT) was developed to enable non-destructive and contactless cross-sectional imaging for manufactured material evaluation and characterization. By combining advantages of photothermal tomography and pulsed thermography, FM-PCT facilitates the generation of three-dimensional thermal images through temporal superposition (stacking) of two-dimensional images from sequential subsurface depths. FM-PCT image processing involves pulsed excitation signals to which frequency delay and matched filtering techniques are applied. Major features of FM-PCT are high-resolution three-dimensional tomographic imaging under low camera frame-rate conditions with self-correcting capability for diffusion (blurring) correction of subsurface images due to cross-correlation processing of individual frequencies in the Fourier decomposition spectrum of the excitation pulse.
Frequency multiplexed photothermal correlation tomography for non-destructive evaluation of manufactured materials
Sfarra, Stefano;
2025-01-01
Abstract
Infrared thermography has been widely applied in real industrial inspection of aerospace, energy management systems, engines, and electric systems. However, two-dimensional imaging modality limits its development. Here, a technique named frequency multiplexed photothermal correlation tomography (FM-PCT) was developed to enable non-destructive and contactless cross-sectional imaging for manufactured material evaluation and characterization. By combining advantages of photothermal tomography and pulsed thermography, FM-PCT facilitates the generation of three-dimensional thermal images through temporal superposition (stacking) of two-dimensional images from sequential subsurface depths. FM-PCT image processing involves pulsed excitation signals to which frequency delay and matched filtering techniques are applied. Major features of FM-PCT are high-resolution three-dimensional tomographic imaging under low camera frame-rate conditions with self-correcting capability for diffusion (blurring) correction of subsurface images due to cross-correlation processing of individual frequencies in the Fourier decomposition spectrum of the excitation pulse.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zhu_2025_Int._J._Extrem._Manuf._7_035601.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
5.84 MB
Formato
Adobe PDF
|
5.84 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


