The central role of peroxisomes in reactive oxygen species and lipid metabolism and their importance in brain functioning are well established. The aim of this work has been to study the peroxisomal population in the Tg2576 mouse model of Alzheimer's disease (AD), at the age of three months when no apparent signs of behavioral, neuroanatomical, cytological, or biochemical alterations have been so far described. The expression and localization of peroxisomal (PMP70, CAT, AOX, and THL) and peroxisome-related proteins (PEX5p, GPX1, SOD1, and SOD2) were studied in the neocortex and hippocampus of transgenic and wild-type animals. Oxidative stress markers (TBARS, acrolein, and 8-OHG) were also evaluated. Our results demonstrate that significant alterations are already detectable at this early stage of the disease and also involve peroxisomes. Their number and protein composition change concomitantly with early oxidative stress. Interestingly, the neocortex shows a compensatory response, consisting in an increase of reactive oxygen species scavenging enzymes, while the hippocampus appears more prone to the oxidative insult. This different behavior could be related to metabolic differences in the two brain areas, also involving peroxisome abundance and/or enzymatic content.

Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer disease. A role for peroxisomes

CIMINI, Anna Maria;CRISTIANO L;FALONE, Stefano;BENEDETTI E;AMICARELLI, FERNANDA;
2009-01-01

Abstract

The central role of peroxisomes in reactive oxygen species and lipid metabolism and their importance in brain functioning are well established. The aim of this work has been to study the peroxisomal population in the Tg2576 mouse model of Alzheimer's disease (AD), at the age of three months when no apparent signs of behavioral, neuroanatomical, cytological, or biochemical alterations have been so far described. The expression and localization of peroxisomal (PMP70, CAT, AOX, and THL) and peroxisome-related proteins (PEX5p, GPX1, SOD1, and SOD2) were studied in the neocortex and hippocampus of transgenic and wild-type animals. Oxidative stress markers (TBARS, acrolein, and 8-OHG) were also evaluated. Our results demonstrate that significant alterations are already detectable at this early stage of the disease and also involve peroxisomes. Their number and protein composition change concomitantly with early oxidative stress. Interestingly, the neocortex shows a compensatory response, consisting in an increase of reactive oxygen species scavenging enzymes, while the hippocampus appears more prone to the oxidative insult. This different behavior could be related to metabolic differences in the two brain areas, also involving peroxisome abundance and/or enzymatic content.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/2897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 54
social impact