In this paper we investigate a quasineutral type limit for the Navier–Stokes–Poisson system. We prove that the projection of the approximating velocity fields on the divergence-free vector field is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation. By exploiting the wave equation structure of the density fluctuation we achieve the convergence of the approximating sequences by means of a dispersive estimate of the Strichartz type.
Titolo: | A quasineutral type limit for the Navier Stokes Poisson system with large data |
Autori: | |
Data di pubblicazione: | 2008 |
Rivista: | |
Abstract: | In this paper we investigate a quasineutral type limit for the Navier–Stokes–Poisson system. We prove that the projection of the approximating velocity fields on the divergence-free vector field is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation. By exploiting the wave equation structure of the density fluctuation we achieve the convergence of the approximating sequences by means of a dispersive estimate of the Strichartz type. |
Handle: | http://hdl.handle.net/11697/2898 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.