A new generation Waveform Digitizer board as been recently made available on the market by CAEN. The new board CAEN V1751 with 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer - Dual Edge Sampling mode) with threshold and Auto-Trigger capabili- ties provides an ideal (relatively low-cost) solution for reading signals from liquid Argon detectors for Dark Matter search equipped with an array of PMTs for the detection of scintillation light. The board was extensively used in real experimental conditions to test its usefulness for possible future uses and to compare it with a state of the art digital oscilloscope. As results, PMT Signal sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the signal scintillation in Argon (characteristic time of about 4 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

First Tests of a new Fast Waveform Digitizer for PMT signal read-out from liquid Argon Dark Matter detectors

CAVANNA, FLAVIO
2012-01-01

Abstract

A new generation Waveform Digitizer board as been recently made available on the market by CAEN. The new board CAEN V1751 with 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer - Dual Edge Sampling mode) with threshold and Auto-Trigger capabili- ties provides an ideal (relatively low-cost) solution for reading signals from liquid Argon detectors for Dark Matter search equipped with an array of PMTs for the detection of scintillation light. The board was extensively used in real experimental conditions to test its usefulness for possible future uses and to compare it with a state of the art digital oscilloscope. As results, PMT Signal sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the signal scintillation in Argon (characteristic time of about 4 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/30399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact