Let $(R,\germ m)$(R,m) be a Noetherian local ring and let $I$I and $J$J be $\germ m$m-primary ideals. Then the length of $R/I^{i}J^{j}$R/IiJj is a polynomial in $i$i and $j$j, for sufficiently large values of $i$i and $j$j. This is a classical result of P. B. Bhattacharya, generalizing the Hilbert-Samuel polynomial to the multi-ideal case. In this work, we extend some well-known results about the coefficients of the Hilbert polynomial to the analogous Bhattachrya polynomial.

Multigraded Hilbert coefficients

GUERRIERI, ANNA;
2005-01-01

Abstract

Let $(R,\germ m)$(R,m) be a Noetherian local ring and let $I$I and $J$J be $\germ m$m-primary ideals. Then the length of $R/I^{i}J^{j}$R/IiJj is a polynomial in $i$i and $j$j, for sufficiently large values of $i$i and $j$j. This is a classical result of P. B. Bhattacharya, generalizing the Hilbert-Samuel polynomial to the multi-ideal case. In this work, we extend some well-known results about the coefficients of the Hilbert polynomial to the analogous Bhattachrya polynomial.
978-0824723354
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/30536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact