When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. We present an innovative PMOR technique for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, amplitude and frequency scaling coefficients and positive interpolation schemes. It is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach.

Parameterized Model Order Reduction of Delayed Systems using an Interpolation Approach with Amplitude and Frequency Scaling Coefficients

ANTONINI, GIULIO;
2012-01-01

Abstract

When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. We present an innovative PMOR technique for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, amplitude and frequency scaling coefficients and positive interpolation schemes. It is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/30947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact