We propose an innovative parametric macromodeling technique for lossy and dispersive multiconductor transmission lines (MTLs) that can be used for interconnect modeling. It is based on a recently developed method for the analysis of lossy and dispersive MTLs extended by using the multivariate orthonormal vector fitting (MOVF) technique to build parametric macromodels in a rational form. They take into account design parameters, such as geometrical layout or substrate features, in addition to frequency. The presented technique is suited to generate state-space models and synthesize equivalent circuits, which can be easily embedded into conventional SPICE-like solvers. Parametric macromodels allow to perform design space exploration, design optimization, and sensitivity analysis efficiently. Numerical examples validate the proposed approach in both frequency and time domain.
Titolo: | Parametric Macromodeling of Lossy and Dispersive Multiconductor Transmission Lines |
Autori: | |
Data di pubblicazione: | 2010 |
Rivista: | |
Abstract: | We propose an innovative parametric macromodeling technique for lossy and dispersive multiconductor transmission lines (MTLs) that can be used for interconnect modeling. It is based on a recently developed method for the analysis of lossy and dispersive MTLs extended by using the multivariate orthonormal vector fitting (MOVF) technique to build parametric macromodels in a rational form. They take into account design parameters, such as geometrical layout or substrate features, in addition to frequency. The presented technique is suited to generate state-space models and synthesize equivalent circuits, which can be easily embedded into conventional SPICE-like solvers. Parametric macromodels allow to perform design space exploration, design optimization, and sensitivity analysis efficiently. Numerical examples validate the proposed approach in both frequency and time domain. |
Handle: | http://hdl.handle.net/11697/3460 |
Appare nelle tipologie: | 1.1 Articolo in rivista |