We present a new model order reduction technique for electrically large systems with delay elements, which can be modeled by means of neutral delayed differential equations. An adaptive multipoint expansion and model order reduction of equivalent first order systems are combined in the new proposed method that preserves the neutral delayed differential formulation. An adaptive algorithm to select the expansion points is presented. The proposed model order reduction technique is validated by pertinent numerical results. A comparison with a previous model order reduction algorithm based on a single point expansion is performed to show the considerably improved modeling capability of the new proposed technique.
Multipoint model order reduction of delayed PEEC systems
ANTONINI, GIULIO;
2011-01-01
Abstract
We present a new model order reduction technique for electrically large systems with delay elements, which can be modeled by means of neutral delayed differential equations. An adaptive multipoint expansion and model order reduction of equivalent first order systems are combined in the new proposed method that preserves the neutral delayed differential formulation. An adaptive algorithm to select the expansion points is presented. The proposed model order reduction technique is validated by pertinent numerical results. A comparison with a previous model order reduction algorithm based on a single point expansion is performed to show the considerably improved modeling capability of the new proposed technique.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.