Emissions (both anthropogenic and biogenic) are extremely important to reduce the uncertainty of most models used to predict the atmospheric chemical species evolution. Measurements of emission of compounds such as nitrogen dioxide (NO2) are very rare because they require measures with high sensitivity and frequencies (above 5 Hz). Direct measurements of NO2 using laser-induced fluorescence (at 10Hz) combined with those of three components of wind are used to quantify directly the NO2 flux applying the eddy covariance technique. In this presentation will be described the technique of measurements and results of the observations made in the forests of Borneo (Malaysia) during the OP3 campaign in summer 2008.

NO2 flux evaluation using laser induced fluorescence measurements and eddy covariance technique, in the Borneo forest during OP3 campaign

DI CARLO, PIERO;
2010-01-01

Abstract

Emissions (both anthropogenic and biogenic) are extremely important to reduce the uncertainty of most models used to predict the atmospheric chemical species evolution. Measurements of emission of compounds such as nitrogen dioxide (NO2) are very rare because they require measures with high sensitivity and frequencies (above 5 Hz). Direct measurements of NO2 using laser-induced fluorescence (at 10Hz) combined with those of three components of wind are used to quantify directly the NO2 flux applying the eddy covariance technique. In this presentation will be described the technique of measurements and results of the observations made in the forests of Borneo (Malaysia) during the OP3 campaign in summer 2008.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/39753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact