In this paper we introduce a new theoretical formulation for the description of the blood flow in the circulatory system. Starting from a linearized version of the Navier-Stokes equations, the Green's function of the propagation problem is computed in a rational form. As a consequence, the input-output transfer function relating the upstream and downstream pressure and blood flow is written in a rational form as well, leading to a time-domain state-space model suitable for transient analysis. The proposed theoretical formulation has been validated by pertinent numerical results.
Spectral models for 1D blood flow simulations
ANTONINI, GIULIO;
2010-01-01
Abstract
In this paper we introduce a new theoretical formulation for the description of the blood flow in the circulatory system. Starting from a linearized version of the Navier-Stokes equations, the Green's function of the propagation problem is computed in a rational form. As a consequence, the input-output transfer function relating the upstream and downstream pressure and blood flow is written in a rational form as well, leading to a time-domain state-space model suitable for transient analysis. The proposed theoretical formulation has been validated by pertinent numerical results.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.