Cryogenic noble liquid detectors are presently considered one of the best options for WIMP Dark Matter searches, especially when extensions to multi ton scale sensitive masses are foreseen. The WArP experiment is the first one that exploits the unique characteristics of liquid Argon to make a highly sensitive search for WIMP Dark Matter candidates. In 2008, a double phase detector has been assembled in the Gran Sasso National Laboratory with 140 kg sensitive mass and a discovery potential in the range of 5 x 10-45 cm2 in the spin-independent WIMP-nucleon cross-section. In addition to standard neutrons and gamma-rays passive shields, WArP implements an 8 ton liquid Argon active shield with 4! coverage. The detector was commissioned and put into operation during the first half of 2009 for a first technical run. This first run lasted about three months and then it was stopped for some detector repairs and modifications in the summer of 2009. A second run was started at the beginning of 2010. Detector design, construction and assembly are described, together with the results of the technical run and the very first results of the 2010 run.

The WArP Experiment

CAVANNA, FLAVIO
2011-01-01

Abstract

Cryogenic noble liquid detectors are presently considered one of the best options for WIMP Dark Matter searches, especially when extensions to multi ton scale sensitive masses are foreseen. The WArP experiment is the first one that exploits the unique characteristics of liquid Argon to make a highly sensitive search for WIMP Dark Matter candidates. In 2008, a double phase detector has been assembled in the Gran Sasso National Laboratory with 140 kg sensitive mass and a discovery potential in the range of 5 x 10-45 cm2 in the spin-independent WIMP-nucleon cross-section. In addition to standard neutrons and gamma-rays passive shields, WArP implements an 8 ton liquid Argon active shield with 4! coverage. The detector was commissioned and put into operation during the first half of 2009 for a first technical run. This first run lasted about three months and then it was stopped for some detector repairs and modifications in the summer of 2009. A second run was started at the beginning of 2010. Detector design, construction and assembly are described, together with the results of the technical run and the very first results of the 2010 run.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/40953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact