The EMC and signal integrity impact of printed circuit board (PCB) trace discontinuities, such as vias, where the signal is transitioned from one layer to another in the PCB stackup, have become significant recently with the use of very high speed signals in today's systems. If these discontinuities are ignored, significant distortion of the high speed signal can occur, and in many cases, cause data errors. A fast and accurate technique to include the effect of via discontinuities in the typical design process is needed to ensure this distortion is considered if significant. Therefore, a simple equivalent circuit for the via discontinuity is needed so that this equivalent circuit can be easily used in the normal signal integrity analysis tools. This paper demonstrates the effect on the equivalent circuit values as the distance between the signal via and the return-current via is increased. Also, the frequency range where a quasi-static based equivalent circuit is accurate or where a full-wave model is required is shown for the various distances between vias

Comparison of via equivalent circuit model accuracy using quasi-static and full-wave approaches

ORLANDI, Antonio;ANTONINI, GIULIO;
2004-01-01

Abstract

The EMC and signal integrity impact of printed circuit board (PCB) trace discontinuities, such as vias, where the signal is transitioned from one layer to another in the PCB stackup, have become significant recently with the use of very high speed signals in today's systems. If these discontinuities are ignored, significant distortion of the high speed signal can occur, and in many cases, cause data errors. A fast and accurate technique to include the effect of via discontinuities in the typical design process is needed to ensure this distortion is considered if significant. Therefore, a simple equivalent circuit for the via discontinuity is needed so that this equivalent circuit can be easily used in the normal signal integrity analysis tools. This paper demonstrates the effect on the equivalent circuit values as the distance between the signal via and the return-current via is increased. Also, the frequency range where a quasi-static based equivalent circuit is accurate or where a full-wave model is required is shown for the various distances between vias
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/42240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact