Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as tectonic movements, landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. This paper describes the approach and some results achieved in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect in InSAR applications. Ground based (microwave radiometers, radiosoundings, GPS) and spaceborne observations (AMSR-E, MERIS, MODIS) of columnar water vapour were compared with Numerical Weather Prediction model runs in Central Italy during a 15-day experiment. The acquired experimental data and their comparison give a first idea of what can be done to gather valuable information on water vapour, which play a fundamental role in weather prediction and radio propagation studies.

Synergic use of EO, NWP and ground based data for the characterisation of water vapour field

CIOTTI, PIERO;FERRETTI, Rossella;
2011-01-01

Abstract

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as tectonic movements, landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. This paper describes the approach and some results achieved in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect in InSAR applications. Ground based (microwave radiometers, radiosoundings, GPS) and spaceborne observations (AMSR-E, MERIS, MODIS) of columnar water vapour were compared with Numerical Weather Prediction model runs in Central Italy during a 15-day experiment. The acquired experimental data and their comparison give a first idea of what can be done to gather valuable information on water vapour, which play a fundamental role in weather prediction and radio propagation studies.
978-888202074-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/43100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact