This paper deals with (q^7+q^5+q^2+1)-sets of tipe (m,n)3 in PG(4,q^2), q>2. Thus,with a minimal incidents condition with respect to dimension two, we obtain a combinatorial characterization of the non-singular Hermitian variety H(4,q^2).

On two character (q^7+q^5+q^2+1)-sets in PG(4,q^2)

INNAMORATI, STEFANO;ZANNETTI, MAURO;ZUANNI, FULVIO
2015-01-01

Abstract

This paper deals with (q^7+q^5+q^2+1)-sets of tipe (m,n)3 in PG(4,q^2), q>2. Thus,with a minimal incidents condition with respect to dimension two, we obtain a combinatorial characterization of the non-singular Hermitian variety H(4,q^2).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/4641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact