Solvent casting/particulate leaching has been used to synthesize highly porous polymeric scaffolds of controlled pore size, based on poly(methyl meth-acrylate) (PMMA) and poly(ε-caprolactone) (PCL). Obtained structures have a total porosity of c. 60%, with good interconnections between the pores. Porous scaffolds prepared using the greatest size of NaCl particles have the best mechanical properties. Both PMMA- and PCL-based materials can be sterilized by ionizing radiation. In the case of PCL-based scaffolds, irradiation causes cross-linking of polymer chains, which leads to an improvement of the mechanical properties of the scaffold. The compressive elastic modulus for non-porous samples increases with irradiation dose from 1.5 MPa for 0 kGy to 1.9 MPa for 280 kGy. Preliminary in vitro studies indicate good biocompatibility of both materials.

Porous polymeric scaffolds for bone regeneration

PAJEWSKI, Leonardo;
2005-01-01

Abstract

Solvent casting/particulate leaching has been used to synthesize highly porous polymeric scaffolds of controlled pore size, based on poly(methyl meth-acrylate) (PMMA) and poly(ε-caprolactone) (PCL). Obtained structures have a total porosity of c. 60%, with good interconnections between the pores. Porous scaffolds prepared using the greatest size of NaCl particles have the best mechanical properties. Both PMMA- and PCL-based materials can be sterilized by ionizing radiation. In the case of PCL-based scaffolds, irradiation causes cross-linking of polymer chains, which leads to an improvement of the mechanical properties of the scaffold. The compressive elastic modulus for non-porous samples increases with irradiation dose from 1.5 MPa for 0 kGy to 1.9 MPa for 280 kGy. Preliminary in vitro studies indicate good biocompatibility of both materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/4836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact