In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R.
A Schoen theorem for minimal surfaces in H^2xR
NELLI, BARBARA;
2015-01-01
Abstract
In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Courbure-finie-35.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
311.77 kB
Formato
Adobe PDF
|
311.77 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.