In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R.
Titolo: | A Schoen theorem for minimal surfaces in H^2xR | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Rivista: | ||
Abstract: | In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R. | |
Handle: | http://hdl.handle.net/11697/5283 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Courbure-finie-35.pdf | N/A | Non specificato | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.