In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R.

A Schoen theorem for minimal surfaces in H^2xR

NELLI, BARBARA;
2015-01-01

Abstract

In this paper we prove a Schoen type theorem for minimal surfaces in H2 × R. Namely, a complete minimal surface immersed in H2 × R with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be a model surface. Moreover, we develop a detailed study of the geometry of the minimal ends of finite total curvature in H2 × R.
File in questo prodotto:
File Dimensione Formato  
Courbure-finie-35.pdf

accesso aperto

Licenza: Non specificato
Dimensione 311.77 kB
Formato Adobe PDF
311.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/5283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact