Let C be an epireflective subcategory of a topological (or initially structured) category A and for any cardinal number alfa, let C(alfa) be the class of objects X of C such that the cardinality of the set UX is less or equal to alfa. We prove that we can associate to C a class C of A-objects such that for any alfa there exists Y-alfa in K with the property that each Y in C(alfa) is Y-alfa initial w.r.t. (U(A(Y,Y-alfa)), UY-alfa).

On systems of cogenerators of epireflective subcategories

TOZZI, Anna
1983-01-01

Abstract

Let C be an epireflective subcategory of a topological (or initially structured) category A and for any cardinal number alfa, let C(alfa) be the class of objects X of C such that the cardinality of the set UX is less or equal to alfa. We prove that we can associate to C a class C of A-objects such that for any alfa there exists Y-alfa in K with the property that each Y in C(alfa) is Y-alfa initial w.r.t. (U(A(Y,Y-alfa)), UY-alfa).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/5767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact