We study the effect of the conduction-electron density of states on magnetic transition temperatures in metallic systems with localized magnetic moments. We assume the indirect-exchange interaction to originate from s-f mixing of the Anderson type and we perform calculations of the coupling parameters, up to fourth-nearest neighbors, in the formalism of da Silva and Falicov. The density-of-states models are obtained from a two-component band in tight-binding scheme and we include on-site Coulomb correlation. We find that the magnetic energy has a modulated Ruderman-Kittel-Kasuya-Yoshida–like behavior as a function of the number of conduction electrons n. This is, however, dominated by two strong maxima when n is such that the Fermi level lies on a peak of the density of states. In this condition the transition temperature is enhanced by at least 1 order of magnitude with respect to the weaker background. This behavior is found for different values of the virtual excitation energy of the s-f mixing mechanism

Effect of intersite band hybridization and on-site correlation on the magnetism of localized-moment systems

MONACHESI, Patrizia
1988-01-01

Abstract

We study the effect of the conduction-electron density of states on magnetic transition temperatures in metallic systems with localized magnetic moments. We assume the indirect-exchange interaction to originate from s-f mixing of the Anderson type and we perform calculations of the coupling parameters, up to fourth-nearest neighbors, in the formalism of da Silva and Falicov. The density-of-states models are obtained from a two-component band in tight-binding scheme and we include on-site Coulomb correlation. We find that the magnetic energy has a modulated Ruderman-Kittel-Kasuya-Yoshida–like behavior as a function of the number of conduction electrons n. This is, however, dominated by two strong maxima when n is such that the Fermi level lies on a peak of the density of states. In this condition the transition temperature is enhanced by at least 1 order of magnitude with respect to the weaker background. This behavior is found for different values of the virtual excitation energy of the s-f mixing mechanism
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/5793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact