Although nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected. At later postnatal ages, blockade of either endogenous NGF by immunoadhesin (TrkA-IgG) or TrkA receptors by monoclonal antibody rescues LTP. Muscarinic receptor activation/inhibition suggests that LTP dependence on NGF is mediated by the cholinergic system. These results indicate that NGF regulates synaptic strength in well-characterized cortical circuitries.
Blocking the NGF-TrkA interaction rescues the developmental loss of LTP in the rat visual cortex: Role of the cholinergic system
DOMENICI, LUCIANO
2000-01-01
Abstract
Although nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected. At later postnatal ages, blockade of either endogenous NGF by immunoadhesin (TrkA-IgG) or TrkA receptors by monoclonal antibody rescues LTP. Muscarinic receptor activation/inhibition suggests that LTP dependence on NGF is mediated by the cholinergic system. These results indicate that NGF regulates synaptic strength in well-characterized cortical circuitries.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.