The presence of endothelin (ET), a vasoconstrictor peptide, in the testis suggests that it may regulate nonvascular target cells. We investigated binding ability, regulation of inositol phosphate metabolism, changes in cytosolic free Ca2+ concentrations ([Ca2+]i), and induction of morphological changes by ET-1 in rat primary testicular myoid cell cultures. ET-1 specifically bound to highly purified rat testicular myoid cells in a time- and temperature-dependent manner. Scatchard analysis of the binding studies indicated the presence of a single class of high affinity binding sites, with an apparent K(d) of 3 x 10(-10) m and a maximal binding capacity of 10(5) sites/cell. ET-1 induced both rapid production of inositol triphosphate and mobilization of [Ca2+]i in a concentration-dependent fashion. By contrast, inositol lipid metabolism was slightly affected by ET-1 in the total peritubular cell population. Purified Sertoli cells failed to show either ET-1 binding or ET-1-induced phosphatidylinositol hydrolysis. Mobilization of [Ca2+]i mostly depended upon the release of Ca2+ from thapsigargin-sensitive intracellular Ca2+, whereas it was not affected by abolishment of the Ca2+ gradient through the plasma membrane or by inhibition of L-type voltage-sensitive Ca2+-channels by nifedipine. These findings together with the fact that Sertoli cells are unable to respond to and bind ET-1 indicate that ET is a specific agonist of myoid cells in the seminiferous tubule and suggest a role for ET-1 in the autocrine/paracrine regulation of testicular function.
RAT TESTICULAR MYOID CELLS RESPOND TO ENDOTHELIN - CHARACTERIZATION OF BINDING AND SIGNAL-TRANSDUCTION PATHWAY
TETI, ANNA MARIA;
1993-01-01
Abstract
The presence of endothelin (ET), a vasoconstrictor peptide, in the testis suggests that it may regulate nonvascular target cells. We investigated binding ability, regulation of inositol phosphate metabolism, changes in cytosolic free Ca2+ concentrations ([Ca2+]i), and induction of morphological changes by ET-1 in rat primary testicular myoid cell cultures. ET-1 specifically bound to highly purified rat testicular myoid cells in a time- and temperature-dependent manner. Scatchard analysis of the binding studies indicated the presence of a single class of high affinity binding sites, with an apparent K(d) of 3 x 10(-10) m and a maximal binding capacity of 10(5) sites/cell. ET-1 induced both rapid production of inositol triphosphate and mobilization of [Ca2+]i in a concentration-dependent fashion. By contrast, inositol lipid metabolism was slightly affected by ET-1 in the total peritubular cell population. Purified Sertoli cells failed to show either ET-1 binding or ET-1-induced phosphatidylinositol hydrolysis. Mobilization of [Ca2+]i mostly depended upon the release of Ca2+ from thapsigargin-sensitive intracellular Ca2+, whereas it was not affected by abolishment of the Ca2+ gradient through the plasma membrane or by inhibition of L-type voltage-sensitive Ca2+-channels by nifedipine. These findings together with the fact that Sertoli cells are unable to respond to and bind ET-1 indicate that ET is a specific agonist of myoid cells in the seminiferous tubule and suggest a role for ET-1 in the autocrine/paracrine regulation of testicular function.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.