Tn5 mutagenesis was used to generate an Azospirillum brasilense SPF94 mutant. Genetic analysis of this mutant revealed that a homologue of the mreB gene, which controls cell shape in Bacillus subtilis and Escherichia coli, was inactivated. The cell-surface properties of the mutant were different from those of the parental strain. The mutant colonies were highly fluorescent when grown on plates containing Calcofluor White. Light and electron microscopy revealed that the mutant cells were round and had thicker capsules than the spiral parental strain. The mutants contained up to ten times more capsule protein than the parental strain, but lacked a 40 kDa protein that is abundant in the parental strain. The phenotype of the isolated mutant resembled that of the cyst-like differentiated forms of Azospirillum, suggesting that the mreB homologue could be involved in differentiation.
Extended phenotype of an mreB-like mutant in Azospirillum brasilense
DEL GALLO, MARIA MADDALENA
2004-01-01
Abstract
Tn5 mutagenesis was used to generate an Azospirillum brasilense SPF94 mutant. Genetic analysis of this mutant revealed that a homologue of the mreB gene, which controls cell shape in Bacillus subtilis and Escherichia coli, was inactivated. The cell-surface properties of the mutant were different from those of the parental strain. The mutant colonies were highly fluorescent when grown on plates containing Calcofluor White. Light and electron microscopy revealed that the mutant cells were round and had thicker capsules than the spiral parental strain. The mutants contained up to ten times more capsule protein than the parental strain, but lacked a 40 kDa protein that is abundant in the parental strain. The phenotype of the isolated mutant resembled that of the cyst-like differentiated forms of Azospirillum, suggesting that the mreB homologue could be involved in differentiation.File | Dimensione | Formato | |
---|---|---|---|
art del gallo 1.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
381.94 kB
Formato
Adobe PDF
|
381.94 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.