Chrysotile and crocidolite fibers incubated in normal human plasma (NHP) generated from the C5 component of complement C5a-type fragments that stimulated polymorphonuclear leukocyte (PMN) chemotaxis. Absorption of NHP with antiserum against C5a totally abolished neutrophil chemotactic activity. Asbestos fibers also produced C5a small peptides in the presence of ethylene glycol bis(beta-aminoethyl ether) N,N,N'N'-tetraacetic acid (EGTA) but not ethylene diamine tetraacetic acid (EDTA). Activation of C5 was significantly inhibited when asbestos fibers were pretreated with iron chelators such as sodium dithionite (DTN), deferoxamine (DFX), or ascorbate (AA). Concentration-related inhibition of C5 activation was also observed when asbestos fibers were added concurrently to plasma in the presence of DFX, 1,3-dimethyl-2-thiourea (DMTU), a strong hydroxyl scavenger, or aprotinin (APR), a specific protease inhibitor. Further, chrysotile and crocidolite significantly increased plasma kallikrein activity. Data demonstrate that asbestos-induced C5 activation plays a role in inflammatory reactions characteristic of asbestosis through mechanisms involving iron ions, hydroxyl radicals, and oxidized C5-ike fragments. The ferrous ions present at the asbestos fiber surface trigger this activation and catalyze, via Fenton reaction, the production of hydroxyl radicals, which in turn convert native C5 to an oxidized C5-like form. This product is then cleaved by kallikrein, activated by the same asbestos fibers, yielding an oxidized C5a with the same functional properties as C5a.

In vitro cleavage by asbestos fibers of the fifth component of human complement through free-radical generation and kallikrein activation

VOLPE, ANNA RITA;CARMIGNANI, Marco
2000-01-01

Abstract

Chrysotile and crocidolite fibers incubated in normal human plasma (NHP) generated from the C5 component of complement C5a-type fragments that stimulated polymorphonuclear leukocyte (PMN) chemotaxis. Absorption of NHP with antiserum against C5a totally abolished neutrophil chemotactic activity. Asbestos fibers also produced C5a small peptides in the presence of ethylene glycol bis(beta-aminoethyl ether) N,N,N'N'-tetraacetic acid (EGTA) but not ethylene diamine tetraacetic acid (EDTA). Activation of C5 was significantly inhibited when asbestos fibers were pretreated with iron chelators such as sodium dithionite (DTN), deferoxamine (DFX), or ascorbate (AA). Concentration-related inhibition of C5 activation was also observed when asbestos fibers were added concurrently to plasma in the presence of DFX, 1,3-dimethyl-2-thiourea (DMTU), a strong hydroxyl scavenger, or aprotinin (APR), a specific protease inhibitor. Further, chrysotile and crocidolite significantly increased plasma kallikrein activity. Data demonstrate that asbestos-induced C5 activation plays a role in inflammatory reactions characteristic of asbestosis through mechanisms involving iron ions, hydroxyl radicals, and oxidized C5-ike fragments. The ferrous ions present at the asbestos fiber surface trigger this activation and catalyze, via Fenton reaction, the production of hydroxyl radicals, which in turn convert native C5 to an oxidized C5-like form. This product is then cleaved by kallikrein, activated by the same asbestos fibers, yielding an oxidized C5a with the same functional properties as C5a.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/6904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact