We prove the existence of a compact genus one immersed minimal surface M, whose boundary is the union of two immersed locally convex curves lying in parallel planes. M is a part of a complete minimal surface with two finite total curvature ends.
Titolo: | An Example of an Immersed Complete Genus One Minimal Surface in R^3 with Two Convex Ends |
Autori: | |
Data di pubblicazione: | 1998 |
Rivista: | |
Abstract: | We prove the existence of a compact genus one immersed minimal surface M, whose boundary is the union of two immersed locally convex curves lying in parallel planes. M is a part of a complete minimal surface with two finite total curvature ends. |
Handle: | http://hdl.handle.net/11697/7153 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.