We formulate a dynamical fluctuation theory for stationary nonequilibrium states (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machlup theory in the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a nonequilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems.
Fluctuations in stationary nonequilibrium states of irreversible processes
GABRIELLI, DAVIDE;
2001-01-01
Abstract
We formulate a dynamical fluctuation theory for stationary nonequilibrium states (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machlup theory in the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a nonequilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.