We prove a vertical halfspace theorem for surfaces with constant mean curvature H = 1/2, properly immersed in the product space H^2 x R, where H^2 is the hyperbolic plane and R is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of noncompact rotational H = 1/2 surfaces in H^2xR.

A halfspace theorem for mean curvature H=1/2 surfaces in H^2xR

NELLI, BARBARA;
2010-01-01

Abstract

We prove a vertical halfspace theorem for surfaces with constant mean curvature H = 1/2, properly immersed in the product space H^2 x R, where H^2 is the hyperbolic plane and R is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of noncompact rotational H = 1/2 surfaces in H^2xR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/7821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact